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Convergent Expansions for Asymptotically 
Degenerate Inverse Correlation Lengths of 
Classical Lattice Spin Systems 

Michael O'Carroll  1'2 
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We obtain convergent expansions for the inverse correlation length associated 
with various spin-spin correlation functions for some weakly coupled multicom- 
ponent classical lattice spin systems. In terms of the lattice quantum field theory 
associated with the models the expansions provide a convergent perturbation 
theory for particle masses which are asymptotically degenerate in the limit of 
zero coupling. 
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temperature expansions for degenerate correlation lengths. 

1. I N T R O D U C T I O N  

Recently in Refs. 1 and 2 convergent expansions were obtained for the 
inverse correlation length associated with the spin-spin (truncated spin-spin) 
correlation function (hereafter cf) of  the high- (low-) temperature d- 
dimensional Ising model. Furthermore each term of the expansion can be 
computed by a finite algorithm. Similar methods and results hold for Ising- 
type models with more general single-spin distributions as well as for some 
gauge models. (3) From the point of  view of  the lattice quantum field theory 
associated with the model the expansion gives the mass of  a particle. The 
mass is a point in the joint spectrum of the self-adjoint energy-momentum 
operators of  the quantum field theory with zero momentum (see Ref. 4 for 
this connection). Formally T-----e -~  where T is the renormalized self-adjoint 
transfer matrix (sup spec T =  1) and H is the energy operator with inf spec 
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H =  0. From the point of view of spectral theory the expansion provides a 
convergent perturbation theory for a nondegenerate level. 

In this paper we obtain convergent expansions for the masses of the 
quantum field theory associated with weakly coupled multicomponent 
classical spin systems. These masses are asymptotically degenerate in the 
limit of zero coupling. From the point of view of spectral theory we furnish a 
convergent perturbation theory for the case of levels which are 
asymptotically degenerate. The masses are related to certain components of 
spin-spin correlation functions in the limit of infinite separation of the spins. 
For the case of diagonal perturbations see Ref. 9. 

For simplicity of exposition we consider the case of a doubly degenerate 
level and explicity the high-temperature classical rotor on the d-dimensional 
lattice Z a in a magnetic field or with an anisotropic interaction or both. The 
Boltzmann factor is taken as 

l[ exp fl ~ 1 1  z 2 1 2 2 1 S 1 ( & s ,  + s~s,) + ~(SxS, + s~s,) + h 
I x - - y l =  1 

where S/~ is the ith component of the spin at the lattice site x E Z a and fl, e, 
and h are taken to be small. The single-spin distribution is fi((S~)2+ 
($2) 2 - 1 ) d S  l d S z . w e d e n o t e p o i n t s x C Z  d b y x = ( x  1, x ) , x E Z  a ~ and 
Ix[-= Y~=I Ix, I = Ix,l + lxl �9 In this model the inverse correlation lengths 

- 1  
- -  o~ oz = ( X l ,  0 ) ,  a = ~ * -  lim ln((SaS~)  (S0)(Sx)) ,  x 1,2 

X 1 --+OO X 1 

are asymptotically (fl ~ 0) degenerate and are degenerate for all fl if 
= h = 0. ( . )  denotes the thermodynamic limit average of .  in the canonical 

ensemble with the above Boltzmann factor. The methods and results 
generalize to multicomponent spin models, gauge models where the character 
of the representation of the gauge group is complex (s) and to gauge-Higgs 
models. 

Unlike the nondegenerate case where there is only one cf here we 
consider the 2 • 2 matrix-valued cf G(x, fl) with matrix dements given by 

G,~7(x;fl)= lim Ga,~7(y;z, fl), x =  y - z ,  a , y =  1,2 
A ~ Z  d 

oz y a 7 where Ga~7(y; z, fl)=- (Sy Sz) a - (Sy)(Sz)  and ( . ) a  denote averages for the 
finite lattice A. The existence, fl analyticity, and translation invariance of 
limATze GA~(X, fl) follow from the polymer expansion of Ref. 6. 

In Section 2 we obtain a spectral representation for 

1 d 

O(p) = (2rc)a/2 ~ G(x) e - ' x ,  P = (Pl,  P), Px =- 2 PiXi 
X i ~ l  
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the Fourier transform of G(x), and develop the relevant spectral analysis to 
show that the mass points are contained in the set of zeros of det/~(p) for p~ 
positive imaginary, p = 0, where i f(p)(~(p)= 1, i.e., if(p) is the Fourier 
transform of F(x) where F is the 2 • 2 matrix convolution inverse of G, with 
matrix elements F~o. In other words 

Z o~o(x; z)ro,(z; Y) = 6~,6~ 
.O ~Z 

In Section 3 we give convergent expansions for the mass points for the cases 
e 4= 0, h = 0; e = 0, h 4: 0; and e 4= 0, h 4= 0. In Section 4 we explain how to 
generalize the methods to other degenerate situations and make some 
concluding remarks. In an appendix we establish regions of P1 analyticity for 
G(p) and/~(p) which are crucial for obtaining the expansions in Section 3. 

2. SPECTRAL CONSIDERATIONS 

Here we obtain a spectral representation for (~(p) analogous to the 
Kallen-Lehman representation in continuum quantum field theory and give 
criteria for a point to belong to the mass spectrum. 

The lattice quantum field theory Hilbert space, with inner product 
denoted by ( , ) ,  the energy-momentum and field operators are constructed as 
in Ref. 4. We denote by 

d 

E(21) and F(~.) = IF[ Fi(2i), ~ C (--7r, ~r] e-I 
i = 2  

the spectral resolution of the self-adjoint evolution operator (renormalized 
transfer "matrix") momentum operator (generator of the unitary space tran- 
slation operators), respectively. As in Ref. 4 we have the Feynman-Kac 
formula 

where 

[ f~ 21 e dg~(21 , ~) 
0 , 1 )  -- ze,z~] d - I  

(So X?, E()~I) F(~,) S'o~X2) ( S ~ ,  X2)(~, ~q0YX?) ~.~(21,X)= "~ 

and S~sg(~) is the Hilbert space vector associated with the function S~(1). 
[0, 1) can be replaced by [0, e -Inc~) using the falloff of G~(x = xl,  0)) given 
by Lemma A1. Adapting the proof of the results of Ref. 4 we have 
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Lemma 2.1. For each fl > 0 and p E (--zr,~r] d-~ there exist signed 
finite measures dp,,r(2~, p), positive for a = y, such that 

1 _~2 ~ dP=y(J'l' P)  

where 
-1  

c%o(p) ~ lim 
XI~OO X 1 

ln ( ~  G,,~,(xa,x))e ~p'~) 

/> cooo(O) = m ~  > - In  eft 

c%~(p)=min{c%~, co~} for a 4 ~ .  Furthermore for a product of intervals 
A, • A, 5a, dp~,(21, p) is continuous in p E ( -n ,  n]d,X and 

Remarks. 1. The importance of the above formula is that it relates the 
energy momentum spectrum, i.e., the suport of the d # ~ ,  to the support of 
the measures dp~,~() h , p). 

2. Formally dp,,y()h, p) = f( . . . .  ]a l 6(;k - p) dfl,~,@l, ~,). 
From the above lemma we see that to locate the mass spectrum it is 

enough to determine the support of the measures dp~(21, p = 0). From now 
on we suppress the p dependence and take p = 0. We now express G~7(p) in 
a more convenient "resolvent" form by introducing the spectral parameter a 
and measures d%~(a) defined by 

1 - -  ) , ( a )  2 
dv,~r(a)- 22(a) dp,~()~(a)), a(2)=(1-)~)2/22 

and a(e-m'~)=coshm,~ - 1, so that G(p)=F(z  = c o s p l -  1) where we 
define 

fl dv,~,(a) Fay(z) = p~({ ;~  = 0})  + 
oshm=?--I a - - Z  

F~7(z) is analytic in z C  C -  [coshm~7-  1, ~ )  and we have set 
m ~  = c%~(0). 

We recall the well-known inversion foruma in the following: 

I.emma 2.2. If e, d(c < d) are points of continuity of dv,~,~ then 

%,~(d) -- %,~(c)= lim I f a  [F,~,~(v + i~) -- F,~,~(v -- i~)] dv 
~o ilr c 
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Romork. The "resolvent" representation of F(z)  and the inversion 
formula can be used in the spectral analysis of Refs. 1-4, making the 
representation theorem for Herglotz functions unnecessary. In the nonmatrix 
case I m F ( z ) - ~ <  0 for I m z  > 0 since I m F ( z ) >  0 for I m z  > 0 from the 
representation for F(z). Furthermore for Im z = 0, Re z sufficiently negative, 
I m F ( z ) = 0  so that I m F ( z ) - l = 0  and using the Cauchy-Riemann 
equations we conclude F - 1  is monotone. Thus in the F ~ analyticity region 
F 1 has at most one zero. F - 1  analyticity is used in the inversion formula 
by setting 

F(v + ie) - F ( v  -- ie) = 1/F(v + ie ) - '  -- 1/F(v - i6) - l  

Let H(z) be the matrix inverse of F(z), i.e., H F =  1, and F , , ( z ) =  
H~(z)/det H(z),  a ~ ~,. Note that H(z = cos p~ -- 1) = F(p  0 =-- F ( p l ,  p = O) 
and that by LemmaA1 /~(Pl) and det/~(p~) are analytic in 0 < I m p ~  < 
- 2  In c'fl so that by F , ~  = H~y/det H and Lernma 2.2 we conclude that the 
mass spectrum is discrete in ( 0 , - 2  In e'fl). We give criteria for a point 
Pl = im to, or not to, belong to the mass spectrum a(M). 

Lemma 2.3. Let O < m < - - 2 1 n c ' ] ~  

(a) If  det/~(pl = im) 4: O then m ~ a(M), 

(b) If d c t F ( p l = i m ) = O  and F. . (p l= im) : /=O,  a = l  
m ~ or(M). 

or 2 then 

t?omork. It cannot happen that det /~(Pl )  ~- 0 and/~,~(Pl)  =/= 0, a = 1 
or 2, for O < I m p l < - 2 1 n e '  fl, [ R e p l l < ~ ,  but Rep l=~0  since G ~ =  
/~r//det/~, a 4: y, is analytic at these points. 

In the following section we introduce and solve implicit equations for 
the zeros of det/~(p,). 

3. IMPLICIT EQUATIONS AND CONVERGENT EXPANSIONS 
FOR THE MASSES 

In this section we give convergent expansions for the masses for the 
cases e 4: 0, h = 0; c = 0, h g= 0; and e 4= 0, h :r 0. The implicit equations for 
the masses can be solved by the methods of Refs. l and 5 so we only sketch 
the results. In obtaining the results below we use the falloff of G and F given 
by LemmaA1.  Also we use the f l = 0  expansions of G(x, fl) given in 
Lemma A4. The subscript S means the constant and linear term in the fl = 0 
Taylor expansion is to be subtracted. 
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3.1. c=gO, h = O  

We see that Gll(X)= G22(x ) so that 011 = 0=2 and /~H ~----/~22" Thus 
d e t / ~ = ( F n  +/~12) (F1~-/~2), i.e., det/~ factorizes and the masses are 
contained in the zeros of the functions R• for p~ positive 
imaginary. We carry out the fl = 0 Taylor expansions for G(p~) and/~(pl) as 
in Ref. 5 but using the result of Lemma A4 to obtain 

Lemma 3.1 : 

(a) C(pl)= 

[ 1 f l ' "  1" f t . - i , ,  e~m) lfl_~(d_l)+~_(e - i ' ' + e  ipL) / ~ + ~ - ( a -  ) +~-(e  + i 
q + Gs(P,) 

fie fie g i I 1 fl (e-ip~ + elpl ) ~ T ( d - 1 ) + ~ - ( e P ~ + e ' O  I T+-~(d-1)+~- 

(b) /~(p,)= 

- f  - -4- te + ) _ _f t a _ l ) I _ 4fl_(e im+eim)_f l~(d_ l )  
I 

,p , fie I) ,+4(e-iPl AV eiPl) 2 ( d -  1) \1 T ( e  . + e . p , ) _ T ( d _  +1 f l  +Fs(p') Iy- 

From Lemma 3.1 we can write 

( d -  1)(1 i ~) + Rs~(p, ,~) 1 fl (1 + e)(e -ira + e ipl) -~- 
R + ( P " f l ) -  2 4 

The implicit equations for the masses are solved by introducing the auxiliary 
complex variables w• and functions H + (w+, fl) such that 
H+(w+ = 1/2 - (/?/4)(1 + e)e iPl, f l )=R•  We find that He(w, fl) is 
jointly analytic, H + (0, 0) = 0 and (?H+/~w)(O, 0) = 1. Thus by the analytic 
implicit function theorem there exist w+(fl) analytic at f l=  0, w+(0)= 0, 
such that H+(w+(]3),fl)= 0. Thus there are two masses given by 

m• = - l n f l  + In 2 -- ln(1 • e) + ln(1 -- 2w• (fl)) 

and there is mass splitting in the fl-independent term. 

3.2. e=O,  hq=O 

We see that G(p) and 
f l l ( p 0 / ~ = ( p 0  and the masses 

F(p) are diagonal so that de tF(pa )=  
are contained in the zeros of Fll(Pl)  and 
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/~22(Pl) for Pl  positive imaginary. In terms of the J functions of  the appendix 
and using Lemma A4 we have the following fl = 0 Taylor  expansions: 

kernma 3.2.: 

(a) (~11 = J o  - J~ + f l [ 2 d ( J , J ~  - 3 J o J  ~ - 2 J  4) + 2 ( d -  1 + cos Pl ) ( Jo  __ j ] ) 2 ]  

+ 0s l l  

(b) 022 = J ,  + f l (J ,  J1 - -  2dJ4J~  + 2(d - 1 + cos p l ) J ] )  

+ Gs22 

(c) _Fll = (Jo -- J ~ ) -  I _ fl(Jo --  J ~ ) -  2 [2d(J3 J1 - 3J0 J~ - 2J~) 

q- 2 ( d -  1 ) ( J 0 -  J2,) 2] - f l ( e  i t) ,  + e i , ~ )  -~- /~SII 

(d) fizz = J 2  ~ - f l J 4 2 ( J s J l  - 2dJ4J~  + 2 ( d -  1)J~) 

- f l ( e - " '  + e i ' ' )  +Fs22 

To solve " ~ 1 1 ( P l , f l ) =  0 introduce w and H l ( w ,  fl ) such that 

H I ( W  = (Jo --  J ~ ) -  i _ f ie-O, , ,  fl) = F , I ( P ,  , f l)  

We find that f f ~ ( p ~  = i r n l , f l ) =  0 where 

m I = - l n  fl + In [(Jo - J~ ) - I  _ w~(fl, h)] 

and Hl (%(f l )  , fl) = 0, Wl(0 ) = 0 and Wl(fl ) is analytic at fl = 0. 
To solve ff22(Pl, f l ) =  0 introduce w and H 2 ( w ,  fl) such that 

H 2 ( w  =_ j ; 1  _ f l e - i p l ,  f l )  = F22(Pl ,fl) 

We find that F22(p  I = irn2, f l ) =  0 where 

m 2 = --lnfl  + ln(J 4 '  -- w2(fl) ) 

and Hz(wz(fl) , fl) = 0, wz(O ) = 0, and w2(fl) is analytic at fl = 0. 
Using Lemma A2 we find 

3 h2 m~ =. --lnfl  -- In + ~- q- O(h 4) -}- O(fl) 

and 

1 h 2 
m2 = - - l n f l - -  ln - f -  + ~ -  + O(h 4) + 0(,6) 

so that there is mass splitting. 
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3.3. ~ ~:0, h #: 0 

There is no apparent factorization of det/~(P0. The fl = 0 expansions of 
G(p 0 and/~(Pl) are given by the following. 

Lemma 3.3: 

all -}- b11~ I b12/~ ) 
i + Os(p,) 

(a) G(p,)  = b,2fl I a22 + bz2fl 

/ _1 51,1 b12 ] ~  
~a11 a~l ~_ a,1a22 ~ 

(b) /~(Pl) -- ~ _ 512 I - 1- 522 f l l  -}- ffs(Pl) 

\ al,a22 I a2; a~-~ / 

where 

all = J o - J ] ,  

a22 = 1 - J o ,  

btl = 2d(J3J 1 - 3JoJ ~ - 2.14) 

+ 2(d - 1)(J o - j~)2 + 2 cos pl(J  o - j])2 

622 : ( J s J 1  - -  2dJ4J~) + 2 ( d -  1)(1 - J o )  2 

+ 2 cos pl(1 - J0) 2 

ba2 = e(1 -Jo)(Jo _ j z )  + e(1 -Jo)(Jo - J ~ ) ( 2 d -  1) 

+ 2 cos pie(1 -Jo)(Jo - J ~ )  

It is convenient to write/~(p~) and det if(P1) as in the following. 

Lemma 3.4: 

(a) f f = (  a l - ~ l + y l l f l - 2 c ~  -/~g2 c~ Pt + 712fl ) +/~s 

-fie2 cos p~ + 7~2fl a221 + 722fi - 2 cos Plfl 

(b) det F(p 0 = [ a ~  + 711fl --fl_( e-'v~ + eiP*) +/~s,1] 

• [a;21 + 7 J  + 

-- [--/~E(e -/pl .~- e ipl) ~- 7121~ --~ Fs12] 2 
where 

711 = -(Jo - J~)-l[Zd(J3J1 - 3JoJ~ - 2j4) + 2(d - 1)(J o - j~)2] 

722 = - (1  - J o ) 2 [ ( J s g l -  2dJ4 J2) + 2 ( d -  1)(1 - J o )  2 ] 

712 ---- -~2d  
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To solve d e t / ~ = 0  introduce w and functions H,~(w, fl) such that 
H,~ y(w = a ~-11 -- fie - ip~,fl) = f f  ,~ r(p, , fl). Thus we can write 

det H(w,  f l ) =  (1 - e  2) w 2 + (-a~l~ + a~21 + 2e2a~ ') w -  e2ah I + T(w, fl) 

- P (w ,  ~)  + T(w,/~) 

where P(w, fl) takes into accout the underlined terms in Lemtna 3.4b, 
de tH(w,  fl) is jointly analytic and T(w, f l ) = ~ k > ~ t j k w i f l  k. P(w, fl) can be 
written P(w, fl) = a(w -- eo )(W - C +o ) where 

a = ( 1  - 6 2)  

e0 ~ = {--[--a~-i  I + af2 ~ + 2e2al- i  1] • [ ( -a111  + af2 ~ + 2e2a1~1) 2 

+ 4(1 -- 6 2) e 2(a tl2)] '/2}/2(1 -- e 2) 

Now det H ( w  = e0 ~, 0) = 0 and (OH/cgw)(w = co ~, O) = ~(e~ -- e o ) a  ~ O. 
Thus there are two zeros of d e t H  given by w• = e0 ~ + u~,  u~(f l )=  O(fl) so 
that w• = a ~ , ' - f i e  m• or the two masses are 

m_~ = - l n f l  + ln(a~-i I - e ~ )  + ln[1 + (a 1-1'- Co~)U• ] 

Considering the small-h behavior of a]-i 1 -  Co ~ we have 

m+ 
l ( 2 - 1 h  2 _ 4 e  z) 

~ - l n f l + I n  2 + 3 h  2 - ~ - 0 - - - ~  

[(462 - h 2 2 - ' )  2 ~- 16(1 - e2)e2] '/2 t 

i 4(1 - -6  2) 
+ O(fl) 

4. GENERALIZATIONS AND CONCLUDING REMARKS 

In order to find inverse correlation lengths or masses for O(n) spin 
systems and their perturbations an appropriate spin-spin n • n matrix e f  can 
be introduced. A spectral representation can be obtained as in Section 2. 
Again the masses will be contained in the set of positive, imaginary p~ such 
that d e t f f ( p l ) =  0 for the appropriate i f (p ,) .  Depending on the form of the 
perturbation det/=(pl) may or may not factorize. If  it factorizes one 
determines the zeros of each factor. In any case by the introduction of an 
auxiliary complex variable w and jointly analytic function det H(w,  fl) the 
number of zeros or masses of detH(w, fl) may be analyzed using the 
Weierstrass preparation theorem. (7) The techniques of Ref. 8 for the analysis 
of algebraic curves can be used to obtain explicit expansions for the masses. 
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It would be interesting to study the analyticity of the masses in the 
other parameters of the perturbations. For example the mass of the Ising 
model in a weak magnetic field of strength h is given by 
m(fl, h) = - In  fl + r(fl, h) where r(fl, h) is jointly analytic in fl and h. Also the 
problem of a convergent perturbation theory for the masses of the time- 
continuum version of these lattice models remains open. 

A P P E N D I X  

Using the decoupling of the hyperplane method as in Ref. 1 we obtain 
decay of G and F for small lfl[ as the following. 

Lemma A1 : 

(a) Iao~?(x,t~)] ~ C 1 IC/~I Ixll§ 

(b) IG~(x,~)l ~c2Lc'~121x~l-~lxl 

except for x = ( i  1, 0), ct = ~ : for x = ( i  1, 0), ct = y replace the 2 by 1. 

In the f l = 0  expansion of G(x, fl), G(fl) and /~(p) we use the h- 
dependent constants J0(h), J~(h), and J3(h) defined by (suppressing the h 
dependence) 

(J0, J l ,  J3) = f ( c~ ql, cos ~i, cos 3 0) exp(h cos ~) dql 

• [f exp(hcosO)d~] -~ 

We also set J4 = 1 --J0 and J5 = J~ - J 3 .  Their small-h behavior is given by 
the following. 

Lemma A2. Jo,Jl,J3 are analytic for small lh[ and 

1 1 h2 
(a) J o = ~ - +  16 +O(h4) 

h 
(b) d~ = ~- + O(h 3) 

(c) J3 = O(h) 

By expanding the numerator and denominator of ( . ) A  and passing to 
the A T zd limit we obtain the f l = 0  expansions for the ef needed in 
Set,zion 3. We have 
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Lemma A3: 

(a) (So ~) = J 1  "~ 2dflJl(Jo - J~) + 068 2) 

(b) (S0 z) = flt~rl(1 - J0)2d + O(p 2) 

(C) ((S~) 2) = J o  + 2df l [J3J1-JoJ~]  + 068 2) 

(d) ((S2) 2) = J4 -~- f l (J5 J ,  - 2 d J J ] )  + 068 2) 

and for Ix I =  1, 

<SoSx)--/~(So- j~)2 + 0602) (e) , 1  

(SoSx) =psi + 068 2) (f) 2 2 

( S o S x )  =PelJo(1 - J o ) +  ( 2 d -  1) J~(1 - J 0 ) ]  + 068 2) (g) , 2 

The f l = 0  expansions of G~r(x, fl) for x =  0 and Ix I = I are obtained 
from Lemma A3 as 

I.emma A4. For x = 0 ,  

(a) Gll = J ~ - - J ~  ~- 2dfl[J3J 1 - 3 J o J ~ -  2J 4] + O(j~) 2 

(b) G~2 = J, + #(JJ1 - 2dJJ~) + O68 ~) 

(c) G,~ = 2p~ d(J~ - J J ~ )  - p c  2d(1 - J0)J~ + 068 2) 

and for Ix I=  1, 

(d) Gll =P(Jo _S~)2 ~_ O(j~2) 

(e) a22 =f l (1  - J o )  2 + 0682) 

(f) 6 ,2  =f ie(1  --Jo)(Jo - J ~ )  + 068 2) 
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